
Neural Monte Carlo Fluid Simulation
Pranav Jain

pranavj@usc.edu

University of Southern California

USA

Ziyin Qu

ziyinq@seas.upenn.edu

University of Pennsylvania

USA

Peter Yichen Chen

pyc@csail.mit.edu

MIT CSAIL

USA

Oded Stein

ostein@usc.edu

University of Southern California

USA

our method
smoke ring

our method
smoke plume & obstacle

i=1 i=100 i=20 i=50

i=75 i=110

INSR [Chen et al. 2023]

ours

i=33i=14

Figure 1: Our method simulates fluids in the presence of obstacles with a combined neural network and Monte Carlo approach
to operator splitting for the Navier Stokes equations. With our method, we can simulate important qualitative vorticity-based
phenomena, such as vortex shedding in the von Kármán vortex street experiment, previous neural spatial representation
papers [Chen et al. 2023b] cannot (left).

ABSTRACT
The idea of using a neural network to represent continuous vec-

tor fields (i.e., neural fields) has become popular for solving PDEs

arising from physics simulations. Here, the classical spatial dis-

cretization (e.g., finite difference) of PDE solvers is replaced with a

neural network that models a differentiable function, so the spatial

gradients of the PDEs can be readily computed via autodifferen-

tiation. When used in fluid simulation, however, neural fields fail

to capture many important phenomena, such as the vortex shed-

ding experienced in the von Kármán vortex street experiment. We

present a novel neural network representation for fluid simula-

tion that augments neural fields with explicitly enforced boundary

conditions as well as a Monte Carlo pressure solver to get rid of

all weakly enforced boundary conditions. Our method, the Neural
Monte Carlo method (NMC), is completely mesh-free, i.e., it doesn’t

depend on any grid-based discretization. While NMC does not

achieve the state-of-the-art accuracy of the well-established grid-

based methods, it significantly outperforms previous mesh-free

neural fluid methods on fluid flows involving intricate boundaries

and turbulence regimes.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0525-0/24/07.

https://doi.org/10.1145/3641519.3657438

CCS CONCEPTS
• Computing methodologies → Computer graphics; Physical
simulation; Neural networks; •Mathematics of computing
→ Probabilistic algorithms.

KEYWORDS
fluid simulation, neural networks, Monte Carlo

ACM Reference Format:
Pranav Jain, Ziyin Qu, Peter Yichen Chen, and Oded Stein. 2024. Neural

Monte Carlo Fluid Simulation. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Conference Papers ’24 (SIGGRAPH
Conference Papers ’24), July 27-August 1, 2024, Denver, CO, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3641519.3657438

1 INTRODUCTION
Simulating fluids boils down to solving the Navier-Stokes partial

differential equation (PDE). The difficulty of solving this PDE has

led to a wide variety of classical simulation methods that are based

on the discretization of the domain with the help of a grid or mesh,

where the domain is subdivided into discrete elements with associ-

ated degrees of freedom to model a reduced function space. This

function is then evolved forward in time.

Meshing the spatial domain to solve PDEs brings with it major

challenges, such as the difficulty of adaptivity, handling higher di-

mensions, and large memory consumption. Neural-network-based

physical simulation methods have the potential to overcome these

mesh-dependent drawbacks by compactly representing the spatial

functions underlying the simulation as neural networks that take a

https://orcid.org/0000-0002-8176-7558
https://orcid.org/0009-0004-0421-7917
https://orcid.org/0000-0003-1919-5437
https://orcid.org/0000-0001-9741-3175
https://doi.org/10.1145/3641519.3657438
https://doi.org/10.1145/3641519.3657438

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Jain et al.

spatial coordinate as input and output the function value at each

point. These networks handle high dimensions by design, requiring

no intricate meshing. They are also adaptive by design, allowing for

optimizing neural network weights for arbitrary scales and resolu-

tions. Since these networks are also continuously differentiable, the

derivatives inherent in the PDEs can be readily computed by simply

differentiating the network. This approach has recently found suc-

cess in cloth simulations [Kairanda et al. 2023], solid simulations

[Zesch et al. 2023], and fluid simulations [Chen et al. 2023b]. We

refer to the recent course on deep learning and physics simulation

by [Du 2023] for more details.

These neural networks, however, can struggle with two things

in particular: First, since they often enforce boundary constraints

weakly, i.e., by adding a penalty term to the training loss that

encourages compliance to the boundary condition when minimized,

they can not guarantee that these boundary conditions are always

fulfilled after training – this is especially problematic in situations

with complicated boundaries. Second, neural network approaches

have difficulties resolving challenging situations characterized by

turbulent flows (see Figure 1).

Another way to deal with the drawbacks of classical spatial

discretization are Monte Carlo methods. A disadvantage of some

Monte Carlo methods is their inability to employ Neumann bound-

ary conditions which are common in many real-world scenarios

for both fluid velocity and pressure. Another disadvantage is the

non-differentiability of most Monte Carlo models – while neural

networks are smooth functions defined everywhere, computing the

gradient or Hessian of a Monte Carlo model is nontrivial.

In this paper, we aim to push the boundaries of how far we can

get without any grid discretization. We marry neural networks

and Monte Carlo methods to create the Neural Monte Carlo (NMC)

fluid simulation method that has the advantages of both and none

of the drawbacks (see Figure 1 for an overview of our results).

We model the velocity of our fluids using neural networks with

explicitly enforced Dirichlet boundary conditions, and the pressure
using a Monte Carlo method, combined with caching approaches

to speed up computation. While our Neural Monte Carlo method

does not achieve the state-of-art accuracy of the well-established

gird methods, it is:

• mesh-free (does not require any kind of grid discretization);

• guaranteeing Dirichlet and Neumann boundary conditions

are exactly fulfilled;

• modeling complex phenomena such as von Kármán limited-

cycle vortex shedding.

We combine the existing Implicit Neural Spatial Representation

(INSR) approach by Chen et al. [2023b] with the existing Monte-

Carlo method by Sawhney et al. [2023] while enforcing hard bound-

ary conditions. Our contribution lies in combining these existing

methods and adding explicit boundary conditions to create our

Neural Monte Carlo method that is able to handle obstacles and

simulate complex fluid phenomena.

2 RELATEDWORK
2.1 Classical fluid simulation
The seminal work by Stam [1999] lays the foundation for fluid

simulation in visual computing. Since then, fluid simulations have

long been leveraging the projection method originally developed

by Chorin [1968], where the highly nonlinear Navier-Stokes equa-

tion is integrated in time in an operator-splitting fashion. Visual

computing researchers [Bridson 2015] have made a lot of efforts

to improve its accuracy and efficiency [Bargteil et al. 2006; Batty

et al. 2007; Bender and Koschier 2016; Carlson et al. 2004; De Goes

et al. 2015; Fedkiw et al. 2001; Fei et al. 2017; Hyde and Fedkiw

2019; Jiang et al. 2015; Kim et al. 2008; Li et al. 2020; Nabizadeh

et al. 2022; Qu et al. 2019; Ren et al. 2014; Ruan et al. 2021; Selle

et al. 2008; Solenthaler and Pajarola 2009; Yuksel et al. 2007; Zehn-

der et al. 2018; Zhu et al. 2013]. Virtually all of these methods

leverage classical basis functions to discretize the spatial vector

field after temporal discretization. These basis functions include

finite difference [Godunov and Bohachevsky 1959], finite volume

[Moukalled et al. 2016], smoothed-particle hydrodynamics [Müller

et al. 2003], particle-in-cells [Zhu and Bridson 2005], and spectral

methods [De Witt et al. 2012]. These traditional discretizations,

however, face challenges in handling high-dimensional inputs, a

large number of memory consumptions, and difficulty of adaptivity

[Ando et al. 2013; Museth 2013; Setaluri et al. 2014].

2.2 Neural fluid simulation
An alternative basis function is the neural network. With the recent

trend in implicit neural representations (also known as neural fields,

coordinate-based neural representations) [Chen and Zhang 2019;

Mescheder et al. 2019; Park et al. 2019; Sitzmann et al. 2020] and

physics-informed neural networks [Raissi et al. 2019; Wang et al.

2021], visual computing researchers have explored various ways to

leverage neural networks to solve PDEs arising in geometry process-

ing [Chetan et al. 2023; Dodik et al. 2023; Yang et al. 2021], topology

optimization [Zehnder et al. 2021], cloth modeling [Kairanda et al.

2023; Santesteban et al. 2022], contact handling [Zesch et al. 2023],

soft bodies [Chang et al. 2023], and elastoplasticity [Chen et al.

2023a; Zong et al. 2023].

Unlike classical fluid simulations, neural fluid simulations excel

at adaptivity thanks to the grid-free nature of neural networks

but suffer significant drawbacks in speed and accuracy. Chen et al.

[2023b] use a neural network based on SIREN [Sitzmann et al.

2020] to represent the velocity and pressure in a classical operator-

splitting fluid simulation, forgoing the grid that is usual in non-

neural methods. Deng et al. [2023] leverages a hybrid neural-grid

formulation to model the spatiotemporal flow map and achieves

greater fidelity than the classic grid methods. Nevertheless, as dis-

cussed by Chuang and Barba [2022], capturing the signature von

Kármán vortex street without any training data and with only a

physics-informed loss remains challenging for neural fluid simu-

lation methods that are entirely grid-free and mesh-free. Similar

to our approach, the recent work of Wang et al. [2023] use neural

networks to successfully model the von Kármán vortex street. Their

approach utilizes non-dimensionalization of the PDEs, advanced

network architectures, and special training schemes. By contrast,

Neural Monte Carlo Fluid Simulation SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Γ₀

Γ₀

Γd
(Dirichlet)

Γd

Γ

Ω obstacle
additional Γd

Figure 2: An overview over our domain and naming con-
ventions. Our domain Ω is bounded by Γ. The parts of the
boundary where the Dirichlet conditions are enforced are Γ𝑑 .
Obstacles are just additional Dirichlet boundaries.

our method employs the operator splitting technique to handle

PDEs while relying on conventional network architectures and

off-the-shelf training schemes.

2.3 Monte Carlo methods
The Monte Carlo technique is an old method to compute integrals

and solve PDEs by randomly sampling the integration domain [Me-

tropolis and Ulam 1949]. Monte Carlo methods, traditionally used

for rendering in computer graphics, have recently become popular

in geometry processing and simulation as well to solve spatial PDEs

without meshes or grids [Li et al. 2023; Miller et al. 2023; Sawhney

and Crane 2020; Sawhney et al. 2022, 2023]. Methods like the one

by Sawhney et al. [2023] can solve elliptic PDEs by starting ran-

dom walks from an arbitrary evaluation point, and stopping the

walk when some criterion (such as a boundary encounter or an

absorption site) is reached.

Monte Carlo methods have also started seeing applications in

fluid simulation, where they circumvent classical methods’ need

for spatial grids or meshes, such as the work of Rioux-Lavoie et al.

[2022] (which cannot model zero Neumann boundary conditions

for the pressure field). In our work, we use the Monte Carlo method

of Sawhney et al. [2023] to model the pressure field of our fluid sim-

ulation – this enables us to impose Neumann boundary conditions.

3 PROBLEM STATEMENT
Consider a domain Ω ⊆ R𝑑 (𝑑 = 2, 3) with boundary Γ = 𝜕Ω. We

model our fluid using the Euler equation, the inviscid case of the

general Navier-Stokes equations (see, e.g., the work of Stam [1999]):

𝜕u
𝜕𝑡

= −(u · ∇)u − ∇𝑝 + g , (1)

where

• u : Ω → R𝑑 is the velocity of the fluid;

• 𝑝 : Ω → R is the pressure of the fluid;
• and g : Ω → R𝑑 are external forces.

In addition, we have an incompressibility condition on our veloc-

ity,

∇ · u = 0. (2)

Our boundary Γ is divided into impassable (Γ𝑑) and passable (Γ0)
sections, Γ = Γ𝑑 ∪ Γ0. On impassable sections, we apply a Dirichlet

(no-through) boundary condition to the velocity,

u(𝑥) · nΓ (𝑥) = 0 ∀𝑥 ∈ Γ𝑑 , nΓ boundary normal, (3)

spatial
coordinate

dense network

Lin ActLin Act Lin Act Lin Act Lin

…
… … …

cutoff
function

ρ

velocity
u

Figure 3: Our velocity neural network takes in a spatial coor-
dinate in R𝑑 , then runs it through a number of alternating
fixed-width linear layers and SIREN activation layers, then
multiplies the output with the cutoff function, and returns a
vector in R𝑑 .

reflecting the fact that fluid can not enter or leave at all through Γ𝑑 ,
and is not constrained in any way on Γ0.

1
On the entire boundary

Γ, we apply Neumann boundary conditions to the pressure,

nΓ (𝑥) · ∇𝑝 (𝑥) = 0 ∀𝑥 ∈ Γ, nΓ boundary normal. (4)

Moreover, at some points in the domain, we can artificially inject

velocity if the problem demands it. Figure 2 shows how our domain

and its boundaries are defined.

We specify initial conditions u0, 𝑝0 for the Euler equation (1),

and then evolve them in time using the PDE.

4 METHOD
The Euler equation (1) is notoriously difficult to discretize. In this

section, we explain our method, which combines neural networks

and Monte Carlo methods and applies them to the classic operator

splitting approach to fluid simulation. Unlike many machine learn-

ing fluids works [Kim et al. 2019], our method does not require
any training data, neither from other solves nor from experiments.

It works just like the classic grid-based solver. The only difference

between ours and a classic grid-based solver is that ours does not

require grid discretization of any kind.

4.1 Operator-splitting time integration: the
projection method

Assuming a timestep size of Δ𝑡 , we evolve our velocity and pressure
in an operator splitting fashion. Specifically, we leverage the pro-

jection method originally developed by Chorin [1968], as described

in the work of [Chen et al. 2023b; Stam 1999]. It consists of three

steps advection, pressure projection, and velocity correction.

Advection. We first advect the velocity forward in time with the

formula

u𝑖+1
adv

(𝑥) = u𝑖 (𝑥 − Δ𝑡 u𝑖 (𝑥)) , (5)

subject to Dirichlet boundary conditions (3).

We can formulate this as the optimization problem

u𝑖+1
adv

= argmin

u
𝐸
adv

(u, u𝑖),

𝐸
adv

(u, u𝑖) =
u − u𝑖

𝑏

2
2
, u𝑖

𝑏
(𝑥) = u𝑖 (𝑥 − Δ𝑡 u𝑖 (𝑥)) ,

(6)

where the norm is the 𝐿2 norm of functions over the domain Ω,
∥ 𝑓 ∥2

2
=
∫
Ω
∥ 𝑓 ∥2 𝑑𝑥 .

1
In some experiments, we also set all of the velocity, including the tangential part, to

zero at some parts of the boundary.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Jain et al.

0 ε

1

0

1

Figure 4: The cutoff function 𝜌 moves continuously from 0

to 1. We plot the output of the neural network ũ multiplied
with the cutoff function 𝜌 . The resulting function u fulfills
Dirichlet boundary conditions.

Pressure projection. We then evolve the pressure by solving the

pressure projection Poisson equation,

Δ𝑝𝑖+1 (𝑥) = ∇ · u𝑖+1
adv

(𝑥) , (7)

subject to pure Neumann boundary conditions (4).

Velocity correction. Finally, we ensure that our velocity fulfills

the incompressibility condition with the velocity correction step,

u𝑖+1 (𝑥) = u𝑖+1
adv

(𝑥) − ∇𝑝𝑖+1 (𝑥) , (8)

subject to Dirichlet boundary conditions (3).

This can be done by solving the optimization problem

u𝑖+1 (𝑥) = argmin

u
𝐸corr (u, u𝑖+1

adv
, 𝑝𝑖+1),

𝐸corr (u, u𝑖+1
adv

, 𝑝𝑖+1) =
u −

(
u𝑖+1
adv

− ∇𝑝𝑖+1
)2

2

,

(9)

where the norm is an 𝐿2 norm of functions over the domain Ω.

Details on imposing Dirichlet boundary conditions for the ad-

vection and velocity correction step and imposing pure Neumann

boundary condition for the pressure projection step is discussed in

Section 4.4 and 4.3 respectively.

Remark: Note that this approach has only discretized the Euler

equation in the time domain. No spatial discretization has happened.
Indeed, this time discretization is compatible with any spatial rep-

resentation of the continuous velocity field and the pressure field.

Next, we introduce our spatial representation that is free from any

kind of grid discretization.

4.2 Velocity
Adapting the work of [Chen et al. 2023b], we represent the velocity

as a neural network that takes a spatial coordinate 𝑥 ∈ R𝑑 as input

and returns a vector u(𝑥) ∈ R𝑑 .

Velocity network. The network consists of alternating linear lay-

ers and SIREN activation layers [Sitzmann et al. 2020], where all

linear layers have the same width. The time-discretized vector fields

are parametrized by the linear layer parameters 𝜃 ; we write u𝑖
𝜃
∼ u𝑖 .

The width of the linear layers and the depth of the network can be

varied depending on user preference. Figure 3 shows a schematic

overview of the velocity network. In general, more and wider layers

are required to capture fine details. Figure 13 shows an example of

a shallow network unable to resolve a vortex ring, while the dense

network displays the correct behavior.

The implicit neural representation u𝑖
𝜃
∼ u𝑖 has a multitude of

advantages over traditional spatial representations such as grids or

meshes [Chen et al. 2023b].

• Every point in space can be exactly sampled, without relying

on interpolation.

• Thememory requirement of the neural network is not related

to the density of spatial samples, it only depends on thewidth

and depth of the network.

• The network is inherently differentiable, and exact gradients

can be computed at every point using autodifferentiation.

The gradients are not approximations that merely converge

to the true gradients.

Training. Training a neural network is analogous to minimizing

the energy functions defined in Section 4.1. The velocity neural

network must be trained twice in every time step: once for the

advection step u𝑖+1
𝜃,adv

, and once for the velocity correction step u𝑖+1
𝜃

.

We use similar, but slightly different training schemes for each.

To train the advected velocity field u𝑖+1
𝜃,adv

we use Adam for a

fixed number of iterations set as a parameter. At each training step,

we randomly sample 𝑘 random points 𝑥1, . . . , 𝑥𝑘 ∈ Ω, and use these
points to evaluate the integral in the advection loss 𝐸

adv
(6):

E
adv

(u) =
∑︁
𝑗

u𝜃 (𝑥 𝑗) − u𝑖
𝜃
(𝑥 𝑗 − Δ𝑡 u𝑖

𝜃
(𝑥 𝑗))

2 . (10)

This loss is used to backpropagate during the training. Note that

it is easy to sample u𝑖
𝜃
(𝑥 𝑗) at any arbitrary point in the domain

since the neural network accepts any spatial coordinate as input.

The parameters we use in training are listed in the supplemental

material.

To train the corrected velocity field u𝑖+1
𝜃

, we use a similar strategy

employing Adam and a fixed number of iterations. We train on the

correction loss

Ecorr (u) =
∑︁
𝑗

u(𝑥 𝑗) − (
u𝑖+1
𝜃,adv

(𝑥 𝑗) − ∇𝑝𝑖+1 (𝑥 𝑗)
)2 . (11)

Our sampling strategy is slightly different when training on

the loss (11). Both the neural network based u𝑖+1
𝜃,adv

and the Monte

Carlo based 𝑝𝑖+1 (𝑥 𝑗) (Explained in Section 4.3) can be evaluated

at any arbitrary point in the domain. Re-evaluating 𝑝𝑖+1 (𝑥 𝑗) at
every training step, however, would hurt performance significantly

since it would require the Monte Carlo pressure solver to run for

every training step. To that end, to train the corrected velocity

network, we uniformly sample a large number of random points

𝑥∗
1
, . . . , 𝑥∗

𝑘∗ ∈ Ω before we start the training procedure at each

timestep, and then randomly subsample a set of actual training

samples (𝑥1, . . . , 𝑥𝑘) ⊆
(
𝑥∗
1
, . . . , 𝑥∗

𝑘∗

)
for each training timestep.

That way we can precompute our pressure samples, i.e compute

𝑝𝑖+1 (𝑥∗
𝑗
) ∀𝑥∗

𝑗
∈ {𝑥∗

1
, . . . , 𝑥∗

𝑘∗ } which significantly improves perfor-

mance while still ensuring effective random sampling during the

training of the corrected velocity field.

Weight reset. We reset the weights of the neural network at the

beginning of each timestep and do not reuse the previous timestep

as initialization, as we find that that significantly increases the

noisiness of u. We suspect this to be due to overfitting during

training. Figure 5 shows a comparison.

Neural Monte Carlo Fluid Simulation SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

0

resetting weights no weights reset

Figure 5: Vorticity plot for the von Kármán vortex street ex-
periment (Section 5.2) with (left) andwithout (right) resetting
weights at every timestep. We find that resetting weights sig-
nificantly reduces noise.

4.3 Pressure
Solving the Poisson equation for the pressure projection is often a

computation bottleneck in traditional grid methods [McAdams et al.

2010]. In fact, it is also a challenge in neural methodswhere the large

errors in the Poisson solve propagate to the rest of the simulation

[Chen et al. 2023b] (see Figure 7). To address this issue, we decide

to use Monte Carlo methods to solve the pressure projection step

to arbitrary precision. Like neural networks, Monte Carlo methods

also do not require grid or mesh discretization of any kind.

Walk on Stars. TheWalk on Stars (WoSt) Monte Carlo method

[Miller et al. 2023; Sawhney et al. 2023] solves the Poisson Equation

with Neumann boundary conditions,

−Δ𝑝 = 𝑓 , (12)

using a random walk approach. Given the right-hand side 𝑓 , WoSt

computes the solution 𝑝 (𝑥) to (12) by sending random walkers from
𝑥 on a randomwalk until they hit the domain boundary, where they

are either absorbed or reflected back into the domain. The Green’s

function of the Poisson equation and the Poisson kernel are then

used to accumulate the data gathered during the random walk and

compute a solution to the Poisson equation. Using this tactic, and a

variety of performance enhancements, we can solve the pressure
projection step(7) (which consists only of a Poisson equation) – see

the articles [Miller et al. 2023; Sawhney et al. 2023] for more details.

The Walk on Stars approach assures that we can evaluate the

pressure field 𝑝𝑖 at every point in the domain, and the Neumann

boundary conditions are guaranteed to be fulfilled by construction.

WoSt’s main advantage – faithful PDE solution on domains with

intricate boundaries – transfers to our method and enables us to

faithfully model even complicated obstacles.

Screened Poisson equation. WoSt can not actually directly solve

the Poisson equation (12) with pure Neumann boundary exactly, as

is the case with our pressure 𝑝𝑖 , since random walkers are reflected

at Neumann boundaries, which would result in infinite reflection.

For such boundaries, WoSt employs a regularization technique that

boils down to solving the screened Poisson equation

−Δ𝑝 − 𝜎𝑝 = 𝑓 , (13)

for a screening scalar 𝜎 > 0, resulting in an approximate solution

of (12) depending on the screening parameter. We find that this

regularization still results in believable fluid simulation. An explo-

ration of the effect of different screening weights can be found in

Figure 6.

σ=50 σ=100 σ=350

0

Figure 6: The pressure in the von Kármán vortex street exper-
iment for multiple screening weights. Increasing the screen-
ing weight reduces the noise produced by the WoSt method,
while not changing the qualitative behavior of the simula-
tion much. We thus tend to use larger screening weights.

Gradients. We do not actually need the pressure, 𝑝𝑖 for the next

step (the velocity correction step (11)). We only need the gradient
∇𝑝𝑖+1. The WoSt method can return the exact gradient of the so-

lution as well using the random walker strategy – no numerical

approximations of the gradient are needed. This is done by using

the gradients of the Green’s function and the Poisson kernel inside

WoSt returning the gradients of the solution.

Encoding the right-hand side. In our implementation, we pass

the right-hand side of the pressure projection step (7), ∇ · u𝑖+1
adv

(𝑥),
to WoSt [Sawhney et al. 2023] (using the official implementation

[Sawhney and Miller 2023]), by evaluating it on a spatial grid.

This grid is only needed because of the interface of Sawhney et al.

[2023]’s WoSt implementation [Sawhney and Miller 2023] – it is

not a theoretical limitation of our method and can be chosen inde-

pendently of the NNs sizes.

4.4 Boundary conditions
While our pressure 𝑝𝑖 fulfills Neumann boundary conditions by

construction, our velocity (so far a neural network that can return

any value in R𝑑), does not fulfill any boundary conditions yet. We

make sure that the boundary conditions for the velocity are fulfilled

by multiplying the output of the neural network, ũ, by a special

cutoff function 𝜌 : R→ [0, 1]:
ũn (𝑥) = (n(𝑏Γ (𝑥)) · ũ(𝑥)) n(𝑏Γ (𝑥))
ũt (𝑥) = ũ − ũn
u(𝑥) = ũt (𝑥) + 𝜌 (𝑠𝑑 (𝑥))ũn (𝑥) ,

(14)

where 𝑠𝑑 : R𝑑 → R is the distance function of the Dirichlet bound-

ary segments Γ𝑑 , and 𝑏Γ (𝑥) is the closest point on Γ to 𝑥 . We then

input the multiplied velocity u into the losses (10), (11) during

training.

If the cutoff function fulfills 𝜌 (0) = 0, 𝜌 (𝜀) = 1, 𝜌 (𝑡 > 𝜀) = 1,

then (14) guarantees that

• nΓ (𝑥) ·u(𝑥) = 0 ∀𝑥 ∈ Γ𝑑 , i.e., u fulfills the Dirichlet boundary
conditions;

• u(𝑥) = ũ(𝑥) ∀𝑥 farther than 𝜀 from Γ𝑑 .

There is a variety of functions that fulfill these conditions. We pick

the simplest choice,

𝜌 (𝑡) =
{
𝑡
𝜀 𝑡 < 𝜀

1 𝑡 ≥ 𝜀
. (15)

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Jain et al.

stable fluids

i=0 i=75 i=110

INSR

ours

i=33i=1 i=14

i=0 i=272 i=300

Figure 7: The von Kármán vortex street experiment simulated with stable fluids [Stam 1999], INSR [Chen et al. 2023b], and
with our method. While INSR degenerates into noise very quickly, our gridless method shows vortex shedding behavior which
qualitatively matches grid-based stable fluids.

This function can be differentiated once, which is enough to au-

todifferentiate u for the purposes of computing E
adv

and Ecorr. For
higher-order losses, one has to make sure that the function is dif-

ferentiable enough, which requires higher-order polynomials.

This cutoff strategy guarantees that our velocity always fulfills

the Dirichlet boundary condition, while not modifying the output

of the neural network ũ too far away from the boundary. While we

have a parameter (𝜖), this parameter does not influence whether

the boundary conditions are fulfilled – it influences the approxima-

tion quality of the neural network. This is different from the INSR

method [Chen et al. 2023b], which uses weak boundary conditions

enforced via penalty. Figure 4 shows how our cutoff functions work

to ensure that u𝑖 always fulfills the Dirichlet boundary conditions.

Similar strategies are employed by Berg and Nyström [2018]; Liu

et al. [2022], and there are other promising approaches for enforcing

explicit boundary conditions in neural networks [Chen et al. 2024;

Sukumar and Srivastava 2022; Zhong et al. 2023].

4.5 Algorithm
A pseudocode implementation of our method can be found in Al-

gorithm 1. It follows the operator splitting approach of Section 4.1

with our neural network velocity and Monte Carlo pressure.

We implement the neural network and its training in Pytorch

for the velocity and adapt the official C++ implementation of WoSt

for the pressure. The experiments were run on an Intel i7 5.2GHz

with a NVIDIA RTX 4080 GPU.

Algorithm 1 Method overview

1: function NMC(u0, 𝑝0)
2: for i = 0, ..., n do
3: Train u𝑖+1

𝜃,adv
by minimizing E

adv
(10)

4: ⊲ randomly sample 𝑥 𝑗 in Ω

5: Pick random points

(
𝑥∗
𝑗

)
𝑗
in Ω

6: evaluate 𝑝𝑖+1 (𝑥∗
𝑗
) ∀𝑗 using Monte Carlo.

7: Train u𝑖+1
𝜃

by minimizing Ecorr (11)

8: ⊲ randomly sub-sample 𝑥 𝑗 from

(
𝑥∗
𝑗

)
𝑗

9: return u𝑛
𝜃
, 𝑝𝑛

5 EXPERIMENTS AND RESULTS
In this section, we present the results of our method applied to a

variety of fluid simulation problems. Details on the initial conditions,

boundary conditions, and parameters used can be found in the

supplemental material.

5.1 Taylor-Green
We use our method to simulate the classical Taylor-Green flow

going back to the work of Taylor and Green [1936]. This experiment

is of particular interest because an analytical solution is known –

the result should remain stationary. We set up the initial condition

to be

u0 (𝑥,𝑦) = (sin(𝑥) cos(𝑦),− cos(𝑥) sin(𝑦)) . (16)

Neural Monte Carlo Fluid Simulation SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

i=1 i=25 i=65 i=100 i=160

Figure 8: Two balls of smoke collide, resulting in the creation of a smoke ring. Our method is capable of simulating qualitative
vorticity-dominant phenomena such as the formation of vortices spreading out to form a smoke ring.

ground truth i=0 i=50 i=100
0

1

Figure 9: Density plot of the Taylor-Green experiment. The
stationary ground-truth density (left) is well-preserved by
our method for multiple timesteps (right).

The results can be seen in Figure 9. Our method satisfactorily pre-

serves the stationary flow.

5.2 Von Kármán vortex street
In the von Kármán vortex street example, flow enters a tube from

the left where it hits a cylindrical obstacle. On this obstacle, we set

all boundary velocity to zero (not just the usual conditions on Γ𝑑)
– both tangential and normal components of the velocity are set

to zero. The flow around the obstacle creates a plume of vorticity

behind the obstacle, and after some time we begin to experience

vortex shedding, where little pockets of vorticity detach from the

main flow. The von Kármán vortex street is of particular interest

to us because it is well known in the neural fluids literature that

neural networks fail to capture the vortex shedding phenomena

[Chuang and Barba 2022].

Figure 7 shows our method applied to the two-dimensional von

Kármán vortex street experiments. Unlike the previous work of

Chen et al. [2023b], our implementation exhibits vortex shedding,

much like the dense classical reference [Stam 1999]. We employ a

rectangular domain that is open on the left and right and has hard

Dirichlet boundaries on the top and bottom. The inflow velocity at

the left is set to be constant.

5.3 Smoke
We conducted three different smoke experiments: a rising smoke

plume, a rising smoke plume with a spherical object, and two smoke

balls colliding to form a smoke ring. In all of these examples, we

visualize the density of the smoke.

i=1 i=20 i=50 i=115

Figure 10: A jet of smoke (without buoyancy) colliding with
a spherical obstacle. A video of this simulation can be found
in the supplemental material.

Smoke plume with obstacle. In Figure 10 we simulate a jet of

smoke (without buoyancy) shooting from the floor and colliding

with a spherical obstacle where both normal and tangential compo-

nents of the boundary velocity are zeroslip. This example demon-

strates our method’s ability to deal with boundary conditions pre-

cisely, and thus interact with obstacles. Similar to the rising smoke

plume, the experiment is set in a cubical container and initialized

with smoke in a spherical ball with random velocities.

Smoke ring. In this experiment (Figure 8), two differently-colored

smoke balls collide with each other. We observe the expected behav-

ior (see, e.g., the work of Qu et al. [2019]) – a smoke ring forming

and slowly spreading out. The experiment is again set in a cubical

domain.

5.4 Quantitative comparison to previous work
In Figure 11 we perform a quantitative comparison of our method

with previous methods using the Taylor-Green example since an

analytical solution is readily available. Our method has lower error

than previous neural fluid simulation methods [Chen et al. 2023b;

Raissi et al. 2019;Wang et al. 2021] on the Taylor-Green example. For

a fair comparison, we ran all methods on networks of comparable

sizes (∼ 2
11

trainable weights) with the respective method’s default

parameters (including stopping conditions). Note that we can not

perform a quantitative comparison for other examples due to lack

of an analytical or ground truth solution.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Jain et al.

0

0.1

0.2

ground truth
velocity

error
PINN

error
piDeepONet

error
INSR

error
ours

𝐿2 error PINN piDeepONet INSR ours
𝑡 = 1 3.955 · 10−3 3.941 · 10−3 8.000 · 10−4 1.835 · 10−4
𝑡 = 25 3.950 · 10−3 3.945 · 10−3 9.737 · 10−4 3.505 · 10−4
𝑡 = 50 3.948 · 10−3 3.947 · 10−3 1.387 · 10−3 8.957 · 10−4

Figure 11: The Taylor-Green stationary flow velocity (left),
and errors for various methods (right): PINN [Raissi et al.
2019], piDeepONet [Wang et al. 2021], INSR [Chen et al.
2023b], and ours. Note the INSR error near the boundary
which we avoid using explicit boundary conditions for u and
𝑝.

5.5 Convergence
In Figure 14 we show a plot of how the log of the loss varies over

training iterations for both the advection and velocity correction

step. The plot is computed for the first timestep of the von Kármán

vortex street example (Figure 7). The loss value gradually decreases,

showing convergence. We choose a fixed number of iterations for

training, as oscillations increase over time.

5.6 Timings
Table 1 reports the running time for each operator splitting step –

advection, projection, and correction. The timings are computed

for a single timestep. Since we use the same number of training

iterations for each timestep of the simulation, the runtime for each

operator splitting step remains similar for every timestep.

6 LIMITATIONS
While our method improves the state of the art on neural networks

for spatial discretization, it inherits some of its limitations [Chen

et al. 2023b]. Our method does not yet match classical grid-based

methods in performance or accuracy. This is a well-known limi-

tation of physics-informed neural networks [Chuang and Barba

2022; Grossmann et al. 2023]. Our method also fails to preserve

symmetry in some cases, as can be seen in our simulation of a rising

smoke plume without buoyancy (see Figure 12). Like other neural-

network-based methods, our method requires intensive parameter

tuning, the details of which are listed in the supplement. For exam-

ple, instead of classical parameters like grid size, we have to tune

network widths and depths. At last, we currently do not explicitly

enforce Neumann boundary conditions on the velocity, but let the

network’s inherent smoothness decide the value of the velocity

field where Dirichlet conditions are not enforced. This limitation

could be overcome in future work with an approach similar to the

work by Berg and Nyström [2018].

Table 1: Table showing the computational time (in seconds)
of each operator split substep for each example. The timings
are computed for a single simulation timestep.

adv. proj. corr.

taylorgreen 15.80s 0.561s 22.57s

von Kármán 18.37s 13.12s 21.60s

smoke plume 29.34s 4.16s 28.62s

smoke with obstacle 26.78s 4.13s 27.46s

smoke ring 16.32s 4.12s 20.40s

i=1 i=30 i=60 i=100 i=190

Figure 12: Failure case: our method fails to preserve the sym-
metry inherent in the problem during the simulation. Here
we simulate a rising smoke plume (without buoyancy).

7 CONCLUSION
We have introduced a neural Monte Carlo method for simulating

fluids that can handle intricate boundaries and model phenomena

such as the von Kármán vortex street that can not be satisfactorily

modeled with previous neural-only methods [Chen et al. 2023b;

Chuang and Barba 2022]. A clear direction for future work is im-

proving the runtime of our method, e.g., leveraging techniques from

meta-learning [Dupont et al. 2022] and reduced-order modeling

[Chen et al. 2022]. Currently, we are training the neural network

from scratch at every timestep. Another way to reduce the compu-

tational time could be to compute the neural network weights at

the next timestep by interpolating the weights from the previous

timesteps instead of retraining. Another promising direction for

future work is to try to improve the (currently very simple) archi-

tecture of the neural network to get accuracies similar to classical

higher-order methods. Promising network architectures include

the recent works of Finzi et al. [2023]; Kovachki et al. [2023]. Future

research could also reduce the amount of noise that is generated

by the Monte Carlo pressure solver.

ACKNOWLEDGMENTS
We thank Bailey Miller and Rohan Sawhney for technical help with

WoSt [Sawhney et al. 2023]. We thank Rundi Wu and Honglin Chen

for technical help with previous work. We thank Sifan Wang and

Shyam Sankaran for technical help with Wang et al. [2023].

Neural Monte Carlo Fluid Simulation SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

REFERENCES
Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations

on tetrahedral meshes. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.
Adam W Bargteil, Tolga G Goktekin, James F O’brien, and John A Strain. 2006. A

semi-Lagrangian contouring method for fluid simulation. ACM Transactions on
Graphics (TOG) 25, 1 (2006), 19–38.

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational

framework for accurate solid-fluid coupling. ACM Transactions on Graphics (TOG)
26, 3 (2007), 100–es.

Jan Bender and Dan Koschier. 2016. Divergence-free SPH for incompressible and

viscous fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3
(2016), 1193–1206.

Jens Berg and Kaj Nyström. 2018. A unified deep artificial neural network approach to

partial differential equations in complex geometries. Neurocomputing 317 (2018),

28–41.

Robert Bridson. 2015. Fluid simulation for computer graphics. CRC press.

Mark Carlson, Peter J Mucha, and Greg Turk. 2004. Rigid fluid: animating the interplay

between rigid bodies and fluid. ACM Transactions on Graphics (TOG) 23, 3 (2004),
377–384.

Yue Chang, Peter Yichen Chen, Zhecheng Wang, Maurizio M Chiaramonte, Kevin

Carlberg, and Eitan Grinspun. 2023. LiCROM: Linear-Subspace Continuous Reduced

OrderModelingwith Neural Fields. In SIGGRAPHAsia 2023 Conference Papers. 1–12.
Honglin Chen, Rundi Wu, Eitan Grinspun, Changxi Zheng, and Peter Yichen Chen.

2023b. Implicit neural spatial representations for time-dependent PDEs. In Proceed-
ings of the 40th International Conference on Machine Learning (ICML’23). Article
202, 16 pages.

Peter Yichen Chen, Maurizio M Chiaramonte, Eitan Grinspun, and Kevin Carlberg.

2023a. Model reduction for the material point method via an implicit neural

representation of the deformation map. J. Comput. Phys. 478 (2023), 111908.
Peter Yichen Chen, Jinxu Xiang, Dong Heon Cho, Yue Chang, GA Pershing, Hen-

rique Teles Maia, Maurizio M Chiaramonte, Kevin Carlberg, and Eitan Grinspun.

2022. CROM: Continuous reduced-order modeling of PDEs using implicit neural

representations. arXiv preprint arXiv:2206.02607 (2022).

Simin Chen, Zhixiang Liu, Wenbo Zhang, and Jinkun Yang. 2024. A Hard-Constraint

Wide-Body Physics-Informed Neural Network Model for Solving Multiple Cases in

Forward Problems for Partial Differential Equations. Applied Sciences 14, 1 (2024).
Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape

modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5939–5948.

Aditya Chetan, Guandao Yang, ZichenWang, Steve Marschner, and Bharath Hariharan.

2023. Accurate Differential Operators for Hybrid Neural Fields. arXiv preprint
arXiv:2312.05984 (2023).

Alexandre Joel Chorin. 1968. Numerical Solution of the Navier-Stokes Equations. Math.
Comp. 22, 104 (1968), 745–762.

Pi-Yueh Chuang and Lorena A Barba. 2022. Experience report of physics-informed

neural networks in fluid simulations: pitfalls and frustration. arXiv preprint
arXiv:2205.14249 (2022).

Fernando De Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.

2015. Power particles: an incompressible fluid solver based on power diagrams.

ACM Trans. Graph. 34, 4 (2015), 50–1.
Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid simulation using

laplacian eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 1–11.
Yitong Deng, Hong-Xing Yu, Diyang Zhang, Jiajun Wu, and Bo Zhu. 2023. Fluid

Simulation on Neural Flow Maps. ACM Trans. Graph. 42, 6, Article 248 (2023).
Ana Dodik, Oded Stein, Vincent Sitzmann, and Justin Solomon. 2023. Variational

Barycentric Coordinates. ACM Transactions on Graphics (2023). https://doi.org/10.

1145/3618403

Tao Du. 2023. Deep Learning for Physics Simulation. In ACM SIGGRAPH 2023 Courses.
Article 6, 25 pages.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. 2022.

From data to functa: Your data point is a function and you can treat it like one.

arXiv preprint arXiv:2201.12204 (2022).
Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of smoke.

In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques. 15–22.

Yun Fei, Henrique Teles Maia, Christopher Batty, Changxi Zheng, and Eitan Grinspun.

2017. A multi-scale model for simulating liquid-hair interactions. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 1–17.

Marc Anton Finzi, Andres Potapczynski, Matthew Choptuik, and Andrew Gordon Wil-

son. 2023. A Stable and Scalable Method for Solving Initial Value PDEs with Neural

Networks. In The Eleventh International Conference on Learning Representations.
Sergei K Godunov and I Bohachevsky. 1959. Finite difference method for numeri-

cal computation of discontinuous solutions of the equations of fluid dynamics.

Matematičeskij sbornik 47, 3 (1959), 271–306.

Tamara G. Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-Bibiane

Schönlieb. 2023. Can Physics-Informed Neural Networks beat the Finite Element

Method? arXiv:2302.04107 [math.NA]

David AB Hyde and Ronald Fedkiw. 2019. A unified approach to monolithic solid-fluid

coupling of sub-grid and more resolved solids. J. Comput. Phys. 390 (2019), 490–526.
Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.

2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–10.

Navami Kairanda, Marc Habermann, Christian Theobalt, and Vladislav Golyanik. 2023.

Neuralclothsim: Neural deformation fields meet the kirchhoff-love thin shell theory.

arXiv preprint arXiv:2308.12970 (2023).
Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and

Barbara Solenthaler. 2019. Deep fluids: A generative network for parameterized

fluid simulations. In Computer graphics forum, Vol. 38. Wiley Online Library, 59–70.

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence

for fluid simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1–6.
Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhat-

tacharya, Andrew Stuart, and Anima Anandkumar. 2023. Neural Operator: Learning

Maps Between Function Spaces With Applications to PDEs. Journal of Machine
Learning Research 24, 89 (2023), 1–97.

Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2020. Fast

and scalable turbulent flow simulation with two-way coupling. ACM Transactions
on Graphics 39, 4 (2020), Art–No.

Zilu Li, Guandao Yang, Xi Deng, Christopher De Sa, Bharath Hariharan, and Steve

Marschner. 2023. Neural Caches for Monte Carlo Partial Differential Equation

Solvers. In SIGGRAPH Asia 2023 Conference Papers. 1–10.
Songming Liu, Hao Zhongkai, Chengyang Ying, Hang Su, Jun Zhu, and Ze Cheng.

2022. A Unified Hard-Constraint Framework for Solving Geometrically Complex

PDEs. In Advances in Neural Information Processing Systems, Vol. 35. 20287–20299.
Aleka McAdams, Eftychios Sifakis, and Joseph Teran. 2010. A Parallel Multigrid

Poisson Solver for Fluids Simulation on Large Grids.. In Symposium on Computer
Animation, Vol. 65. 74.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas

Geiger. 2019. Occupancy networks: Learning 3d reconstruction in function space. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4460–4470.

Nicholas Metropolis and Stanisław Ulam. 1949. The Monte Carlo Method. J. Amer.
Statist. Assoc. 44, 247 (1949), 335–341.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary

Value Caching for Walk on Spheres. ACM Trans. Graph. 42, 4, Article 82 (2023).
Fadl Moukalled, Luca Mangani, Marwan Darwish, F Moukalled, L Mangani, and M

Darwish. 2016. The finite volume method. Springer.
Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid

simulation for interactive applications. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 154–159.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
transactions on graphics (TOG) 32, 3 (2013), 1–22.

Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert Chern.

2022. Covector fluids. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–16.
Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-

grove. 2019. Deepsdf: Learning continuous signed distance functions for shape

representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 165–174.

Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient

and conservative fluids using bidirectional mapping. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1–12.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed

neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations. J. Comput. Phys. 378
(2019), 686–707.

Bo Ren, Chenfeng Li, Xiao Yan, Ming C Lin, Javier Bonet, and Shi-Min Hu. 2014.

Multiple-fluid SPH simulation using amixturemodel. ACMTransactions on Graphics
(TOG) 33, 5 (2014), 1–11.

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada,

Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte

Carlo Method for Fluid Simulation. ACM Trans. Graph. 41, 6, Article 240 (2022).
Liangwang Ruan, Jinyuan Liu, Bo Zhu, Shinjiro Sueda, Bin Wang, and Baoquan Chen.

2021. Solid-fluid interaction with surface-tension-dominant contact. ACM Transac-
tions on Graphics (TOG) 40, 4 (2021), 1–12.

Igor Santesteban, Miguel A. Otaduy, Nils Thuerey, and Dan Casas. 2022. ULNeF:

Untangled Layered Neural Fields for Mix-and-Match Virtual Try-On. In Advances
in Neural Information Processing Systems, (NeurIPS).

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing: a grid-

free approach to PDE-based methods on volumetric domains. ACM Trans. Graph.
39, 4, Article 123 (2020).

Rohan Sawhney and Bailey Miller. 2023. Zombie: A Grid-Free Monte Carlo Solver for
PDEs.

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-free

Monte Carlo for PDEs with spatially varying coefficients. ACM Trans. Graph. 41, 4,
Article 53 (2022).

https://doi.org/10.1145/3618403
https://doi.org/10.1145/3618403
https://arxiv.org/abs/2302.04107

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Jain et al.

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2023. Walk on Stars:

A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions.

ACM Trans. Graph. (2023).
Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.

An unconditionally stable MacCormack method. Journal of Scientific Computing
35, 2 (2008), 350–371.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SP-

Grid: A sparse paged grid structure applied to adaptive smoke simulation. ACM
Transactions on Graphics (TOG) 33, 6 (2014), 1–12.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and

Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation

Functions. In Proc. NeurIPS.
Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible

SPH. In ACM SIGGRAPH 2009 papers. 1–6.
Jos Stam. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH ’99). 121—-128.
N. Sukumar and Ankit Srivastava. 2022. Exact imposition of boundary conditions with

distance functions in physics-informed deep neural networks. Computer Methods
in Applied Mechanics and Engineering 389 (2022).

Geoffrey I. Taylor and Albert E. Green. 1936. Mechanism of the Production of Small

Eddies from Large Ones. Proceedings of the Royal Society of London 158, 895 (1936),

499–521.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. 2023. An Ex-

pert’s Guide to Training Physics-informed Neural Networks. arXiv preprint
arXiv:2308.08468 (2023).

Sifan Wang, Hanwen Wang, and Paris Perdikaris. 2021. Learning the solution operator

of parametric partial differential equations with physics-informed DeepONets.

Science advances 7, 40 (2021), eabi8605.
Guandao Yang, Serge Belongie, BharathHariharan, andVladlen Koltun. 2021. Geometry

Processing with Neural Fields. Advances in Neural Information Processing Systems
34 (2021).

Cem Yuksel, Donald HHouse, and John Keyser. 2007. Wave particles. ACMTransactions
on Graphics (TOG) 26, 3 (2007), 99–es.

Jonas Zehnder, Yue Li, Stelian Coros, and Bernhard Thomaszewski. 2021. Ntopo:

Mesh-free topology optimization using implicit neural representations. Advances
in Neural Information Processing Systems 34 (2021), 10368–10381.

Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An advection-

reflection solver for detail-preserving fluid simulation. ACM Transactions on Graph-
ics (TOG) 37, 4 (2018), 1–8.

Ryan S Zesch, VismayModi, Shinjiro Sueda, and David IW Levin. 2023. Neural Collision

Fields for Triangle Primitives. In SIGGRAPH Asia 2023 Conference Papers. 1–10.
Fangcheng Zhong, Kyle Fogarty, Param Hanji, Tianhao Wu, Alejandro Sztraj-

man, Andrew Spielberg, Andrea Tagliasacchi, Petra Bosilj, and Cengiz Oztireli.

2023. Neural Fields with Hard Constraints of Arbitrary Differential Order.

arXiv:2306.08943 [cs.LG]

Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fedkiw. 2013. A

new grid structure for domain extension. ACM Transactions on Graphics (TOG) 32,
4 (2013), 1–12.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965–972.

Zeshun Zong, Xuan Li, Minchen Li, Maurizio M Chiaramonte, Wojciech Matusik, Eitan

Grinspun, Kevin Carlberg, Chenfanfu Jiang, and Peter Yichen Chen. 2023. Neural

Stress Fields for Reduced-order Elastoplasticity and Fracture. In SIGGRAPH Asia
2023 Conference Papers. 1–11.

https://arxiv.org/abs/2306.08943

Neural Monte Carlo Fluid Simulation SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

number of layers: 2 number of layers: 5

i=0 i=160 i=160
top view side view top view side view

Figure 13: Performing the smoke ring experiment of Figure 8
with two different network depths. With a shallow network
(middle), the method cannot resolve vorticities sufficiently,
resulting in no formation of a smoke ring and the two dif-
ferent smoke balls not mixing. With a deep enough network
(right), the smoke ring correctly forms and the two smoke
balls mix. Layer sizes are 64 for both.

Convergence comparison for advection and velocity correction step
log(loss)

Number of Iterations

Figure 14: Plot showing how loss varies for 10, 000 iterations
for advection and velocity correction step.

	Abstract
	1 Introduction
	2 Related work
	2.1 Classical fluid simulation
	2.2 Neural fluid simulation
	2.3 Monte Carlo methods

	3 Problem statement
	4 Method
	4.1 Operator-splitting time integration: the projection method
	4.2 Velocity
	4.3 Pressure
	4.4 Boundary conditions
	4.5 Algorithm

	5 Experiments and Results
	5.1 Taylor-Green
	5.2 Von Kármán vortex street
	5.3 Smoke
	5.4 Quantitative comparison to previous work
	5.5 Convergence
	5.6 Timings

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

