SUPPLEMENTAL MATERIAL

Here we describe the setup of our experiments.
For all experiments, we use the SIREN network with the ADAM optimizer and no scheduler.

Taylor-Green

Experiment.
Domain.

$$
x \in[0,2 \pi], y \in[0,2 \pi]
$$

Initial Velocity.

$$
u(x, y)=(\sin (x) \cos (y),-\cos (x) \sin (y))
$$

Parameters.

- learning rate: 10^{-5}
- layer size: 6
- number of layers: 64
- timestep $(\Delta t): 0.001$
- max iterations: 10000
- batch size: 64^{2}
- cutoff function $\varepsilon: 0.01$
- screening weight: 350

Comparison experiment. All previous methods INSR [Chen et al. 2023b], PINN [Raissi et al. 2019], and piDeepONet [Wang et al. 2021] are run using the same parameters.

Domain.

$$
x \in[0,2 \pi], y \in[0,2 \pi]
$$

Initial Velocity.

$$
u(x, y)=(\sin (x) \cos (y),-\cos (x) \sin (y))
$$

Parameters.

- layer size: 3
- number of layers: 256
- timestep $(\Delta t): 0.001$
- max iterations: 20000
- cutoff function $\varepsilon: 0.01$
- screening weight: 350

Von Kármán vortex street

Domain.

$$
x \in[-1.1,1.9], y \in[-0.6,0.6]
$$

Initial Velocity.

$$
u(x, y)=(0.5,0.0)
$$

Obstacle. Circular obstacle with radius 0.04 and center $(-0.8,0.0)$

Parameters.

- learning rate: 10^{-5}
- layer size: 2
- number of layers: 128
- timestep $(\Delta t): 0.05$
- max iterations: 10000
- batch size: 128^{2}
- cutoff function $\varepsilon: 0.015$
- screening weight: 350

Smoke

Rising smoke plume.
Domain.

$$
x \in[-1.0,1.0], y \in[-1.0,1.0], z \in[-1.0,1.0]
$$

Initial Velocity. Randomly supplied values within a range

$$
(x, y, z) \in((-0.1,0.1),(-0.1,0.1),(0.1,0.3))
$$

Parameters.

- learning rate: 10^{-5}
- layer size: 5
- number of layers: 64
- timestep $(\Delta t): 0.05$
- max iterations: 10000
- batch size: 128^{3}
- cutoff function $\varepsilon: 0.01$
- screening weight: 350

Smoke plume with obstacle.

Domain.

$$
x \in[-1.0,1.0], y \in[-1.0,1.0], z \in[-1.0,1.0]
$$

Initial Velocity.

$$
u(x, y, z)=(0.0,0.0,1.0)
$$

Obstacle. Spherical obstacle with radius 0.1 and center ($0.0,0.0$, -0.3)

Parameters.

- learning rate: 10^{-5}
- layer size: 5
- number of layers: 64
- timestep $(\Delta t): 0.05$
- max iterations: 10000
- batch size: 128^{3}
- cutoff function $\varepsilon: 0.01$
- screening weight: 350

Smoke ring.
Domain.

$$
x \in[-1.0,1.0], y \in[-1.0,1.0], z \in[-1.0,1.0]
$$

Initial Velocity.

$$
\begin{array}{r}
\theta=\operatorname{acos}\left(\frac{x-0.2}{\sqrt{(x-0.2)^{2}+(y-2)^{2}}}\right) \\
u_{1}(x, y, z)=(0,0,0.2(1+0.01 \cos (8 \cos (\theta))) \\
u_{2}(x, y, z)=(0,0,-0.2(1+0.01 \cos (8 \cos (\theta)))
\end{array}
$$

u_{1} and u_{2} are defined only within spheres. First smoke sphere has center ($0.0,0.0,-0.21$) with radius 0.2 . The second smoke sphere
has center $(0.0,0.0,0.21)$ with radius 0.2 .
Parameters.

- learning rate: 10^{-5}
- layer size: 5
- number of layers: 64
- timestep $(\Delta t): 0.05$
- max iterations: 10000
- batch size: 128^{3}
- cutoff function $\varepsilon: 0.01$
- screening weight: 350

